Some Liouville Theorems on Finsler Manifolds
نویسندگان
چکیده
منابع مشابه
Some Rigidity Theorems for Finsler Manifolds
This is a survey article on global rigidity theorems for complete Finsler manifolds without boundary.
متن کاملOn Manifolds and Some Liouville Theorems of Porous Media Equations
(1.1) ut = ∆F (u) on a complete Riemannian manifold (M,g) of dimension n ≥ 1 with Ric(M) ≥ −k for some k ≥ 0. Here F ∈ C2(0,∞), F ′ > 0, and ∆ is the Laplace-Beltrami operator of the metric g. There is a lot of literature on this kind of topics. For example, related problems such as Porous Media Equations have been considered by D.G. Aronson [1], G. Auchmuty and D. Bao [2], M.A. Herrero and M. ...
متن کاملCritical Point Theorems on Finsler Manifolds
In this paper we consider a dominating Finsler metric on a complete Riemannian manifold. First we prove that the energy integral of the Finsler metric satisfies the Palais-Smale condition, and ask for the number of geodesics with endpoints in two given submanifolds. Using Lusternik-Schnirelman theory of critical points we obtain some multiplicity results for the number of Finsler-geodesics betw...
متن کاملSome Rigidity Theorems for Finsler Manifolds of Sectional Flag Curvature
In this paper we study some rigidity properties for Finsler manifolds of sectional flag curvature. We prove that any Landsberg manifold of non-zero sectional flag curvature and any closed Finsler manifold of negative sectional flag curvature must be Riemannian.
متن کاملSome Remarks on Liouville Type Theorems
The goal of this note is to present elementary proofs of statements related to the Liouville theorem.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics
سال: 2019
ISSN: 2227-7390
DOI: 10.3390/math7040351